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A sufficient condition for stability of fluid limit1

models1
2

Rosario Delgado2
3

Abstract4

We prove that in the subcritical case, a fluid limit model is stable if state5

space collapse with a “lifting” matrix that verifies a restriction holds.6

1 Introduction7

We consider a fluid model which consists of J stations, with a single server and8

an infinite-capacity buffer at each one, that process K different fluid classes, with9

K ≥ J ≥ 1. Each fluid class can be processed at only one station and feedback10

is allowed. We assume a work-conserving service discipline. This fluid model11

can be considered as the fluid approximation of an associated queueing network12

that works under any head-of-the-line work-conserving service discipline and with13

inter-arrival and service times not necessarily exponential. It is known that the14

stability of the queueing network (the positive Harris recurrence of the underlying15

Markov process describing the network dynamics) is ensured if the fluid model is16

stable (see Theorem 4.2 [2]). Stability of a fluid limit model means that the queue17

process reaches zero in finite time and stays there regardless of the initial fluid18

levels. It is known that sub-criticality (traffic intensity strictly less than one at19

each station) is not a sufficient condition, although necessary, for stability.20

In this work we establish a sufficient condition for the stability of the fluid21

limit model (in the subcritical case): it is a kind of state space collapse assumption22

with a “lifting” matrix that verifies a technical restriction. State space collapse23

condition has turned out to be a key ingredient in the proof of heavy-traffic limits24

for multi-class queueing networks in the light-tailed as well as in the heavy-tailed25

environment. See for instance [5], [4], [1], [7] and [3]. As far as we know, this is the26

first time that this kind of condition has been related with the study of stability27

(light-traffic).28
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2 The fluid limit model29

Consider a fluid model consisting of J ≥ 1 single-server stations with a single30

server and an infinite-capacity buffer at each one. There are K fluid classes with31

K ≥ J , each one processed at only one station (but at each station more than one32

fluid class can be processed), s(k) being the station where class k fluid is processed,33

and s−1(j) the set of fluid classes served at station j. We introduce the J × K34

(deterministic) constituency matrix C =
(
Cjk

)
j,k

by Cjk = 1 if j = s(k) and 035

otherwise.36

Let αk ≥ 0 be the exogenous inflow rate and µk > 0 be the potential outflow37

rate, for class k fluid, and define mk
def= 1

µk
and matrix M

def= diag(m1, . . . , mk) .38

Upon being processed at station s(k), a proportion Pk` of class k fluid leaving39

station s(k) goes next to station s(`) to be processed there as a class ` fluid. The40

“flow-transfer” matrix P = (Pk`)K
k,`=1 is assumed to be sub-stochastic and to have41

spectral radius strictly less than one. Hence, Q
def=

(
I−PT

)−1 is well defined. We42

assume that fluid at each station is processed following a work-conserving service43

discipline by arrival order into each class.44

The fluid model is described by elements α = (α1, . . . , αk)T , M, C, P and45

z = (z1, . . . , zK)T ≥ 0, zk being the initial amount of class k fluid in the system.46

We refer to it by (α, M, C, P, z).47

We define λ to be the unique K−dimensional vector solution to the traffic48

equation λ = α + PT λ , that is, λ = Qα , and introduce the fluid traffic intensity49

at station j as ρj
def=

∑

k∈s−1(j)

λk mk (in matrix form, ρ = C M λ ) . We will assume50

throughout the paper that ρ < e, with e = (1, . . . , 1)T (sub-criticality).51

Processes A, D, T, Z, W and Y will be used to measure the performance of52

the fluid network: A(t) is the cumulative amount of fluid arrived (from outside and53

by feedback) by time t (to each fluid class) and D(t) is the cumulative amount54

of fluid departing from each class (to other classes or to outside). T (t) is the55

cumulative amount of processing time spent on each fluid class by time t. Z(t) is56

the amount of fluid of any class in the system at time t. All the above processes are57

K−dimensional and the rest are J−dimensional: W (t) denotes the workload or58

amount of time required by any server to complete processing of all fluid in queue,59

at time t, and Y (t) is the cumulative amount of time that the server at each station60

has been idle in the interval [0, t]. By definition, T and Y are nondecreasing61

processes which depend on the specific service discipline, and A(0) = D(0) =62

T (0) = Y (0) = 0.63
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These processes are related by means of the following fluid model equations:

A(t) = α t + PT D(t) , (1)

Z(t) = z + A(t)−D(t) = z + α t− (I − PT )M−1 T (t) , (2)

D(t) = M−1 T (t) , (3)
C T (t) + Y (t) = e t , (4)∫ ∞

0

Wj(t) d Yj(t) = 0 for all j = 1, . . . , J , (5)

W (t) = C M (z + A(t))− C T (t) , (6)

Note that equation (5) expresses that for any station j, idle time Yj can only in-64

crease when workload Wj is zero, that is exactly the meaning of a work-conserving65

discipline.66

Let Ψ(·) def=
(
A(·), D(·), T (·), Z(·), W (·), Y (·) )

be any solution of the fluid67

model equations (1)-(6), which may not have in general a unique solution.68

Definition 1 (Stability of the fluid limit model). We say that the fluid limit model69

(α, M, C, P, z) is stable if there exists t0 > 0 such that for any solution Ψ(·) of70

the fluid model equations, Z(t) = 0 ∀t ≥ t0 |z| , where |z| def=
∑K

k=1 zk .71

3 The main result72

Note that from (6), (2) and (3) we can express the workload in terms of the queue
process by means of

W (t) = C M
(
z + A(t)−M−1 T (t)

)
= C M Z(t) , (7)

that is, for any j, Wj(t) =
∑

k∈s−1(j)

mk Zk(t), which expresses workload at station73

j in terms of fluid amount for each class processed at that station. Next definition74

introduces a condition establishing that Z, in its turn, can be expressed in terms75

of W by means of a “lifting” deterministic matrix.76

Definition 2. Given a solution Ψ(·) of the fluid model equations associated to a
fluid limit model (α, M, C, P, z), we say that the fluid limit model satisfies state
space collapse with “lifting” matrix ∆ if

Z = ∆ W

where ∆ =
(
∆kj

)
kj

with ∆kj = δk > 0 if k ∈ s−1(j) and 0 otherwise. And we77

say that the “lifting” matrix ∆ is regular if accomplishes the following technical78

restriction: C M Q ∆ is invertible and matrix R defined by R
def=

(
C M Q ∆

)−1
79

verifies assumption (HR): R can be expressed as I + Θ, with Θ a square matrix80

such that the matrix obtained from Θ by replacing its elements by their absolute81

values, has spectral radius strictly less than 1.82
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Roughly speaking, state space collapse assumption expresses that any fluid83

class k contributes a fixed portion δk to the workload at station s(k). That is, the84

fluid classes processed at the same station are mixed in a fixed way in the station’s85

queue.86

Remark 1. In the particular case K = J , if we assume for convenience (and87

without loss of generality) that s(j) = j for any j = 1, . . . , J , then C = I, (7)88

becomes W = M Z and we trivially obtain state space collapse with regular “lifting”89

matrix ∆ = M−1.90

Now we establish our main result. Recall that we assume ρ < e .91

Theorem 1. The fluid limit model is stable if verifies state space collapse with a92

regular “lifting” matrix ∆.93

The proof of the theorem is based on two lemmas formulated below. For the94

sake of completeness we introduce a known definition:95

Definition 3 (R-regularization or Skorokhod problem). Let X̃ be a J−dim.
stochastic process with continuous paths, defined on some probability space, with
X̃(0) ≥ 0 , and R̃ a J×J matrix. We say that the pair (W̃ , Ỹ ) of J−dim. stochas-
tic processes defined on the same probability space and with continuous paths is a
solution of the R̃−Skorokhod problem of X̃ in the first orthant RJ

+ if:

W̃ (t) ∈ RJ
+ for all t ≥ 0 , W̃ = X̃ + R̃ Ỹ a.s.

Ỹ has non− decreasing paths , Ỹ (0) = 0 and for any j, Ỹj only increases

if W̃ is on face {w ∈ RJ
+ : wj = 0} , that is ,

∫ ∞

0

W̃j(t) d Ỹj(t) = 0 .

Remark 2. Proposition 4.2 [6] shows that condition (HR) on a matrix R̃ is96

sufficient to ensure strong path-wise uniqueness of the solution.97

Lemma 1 (Lemma 5.1 [2]). Assume ρ < e. Let (W̃ , Ỹ ) be the (unique) solution
of the R̃−Skorokhod problem on the first orthant of a process X̃, with R̃ verifying
assumption (HR). If

W̃ (s) + X̃(t + s)− X̃(s) ≥ θ t for all s, t ≥ 0 ,

with θ = R̃ (ρ−e), then we have that Ỹ (t+s)−Ỹ (s) ≤ (e−ρ) t for all s, t ≥ 0 , and98

hence Ỹ ′(s) ≤ (e− ρ) if Ỹ (·) is differentiable at s and Ỹ ′(·) denotes its derivative.99

Lemma 2 (Lemma 5.2 [2]). Let f : [0, +∞) −→ [0, +∞) be a nonnegative100

function that is absolutely continuous and let κ > 0 be a constant. Suppose that101

for almost surely (with respect to the Lebesgue measure on [0, +∞) ) all regular102

points t, f ′(t) ≤ −κ whenever f(t) > 0. Then f is nonincreasing and f(t) ≡ 0 for103

t ≥ f(0)
κ .104

Proof of Theorem 1: Consider a fluid limit model (α, M, C, P, z) with ρ < e105

and satisfying state space collapse with a regular “lifting” matrix ∆. We want to106
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prove the existence of some t0 > 0 such that for any solution of the fluid model107

equations, Ψ(·) =
(
A(·), D(·), T (·), Z(·), W (·), Y (·)), Z(t) = 0 ∀t ≥ t0 |z| .108

Step 1: We will see that (W, Y ) is the unique solution of the R−Skorokhod
problem of X on the first orthant, X being defined by X(t) def= W (0) + θ t , and
R = (C M Q ∆)−1. Indeed, from (2) we obtain D(t) = z + A(t)−Z(t) , which can
be substituted in (1) giving

A(t) = Qα t + QPT z −QPT Z(t) . (8)

By state space collapse assumption with regular “lifting” matrix ∆, we can replace
in (8) Z by ∆ W , and by substituting into (6) obtain

W (t) = W (0) + C M
(
Qα t + Q PT ∆ W (0)−QPT ∆ W (t)

)− e t + Y (t) ,

by using (4) and the fact that W (0) = C M z. By isolating W (t) in its turn
from this expression and taking into account the definition of R and the fact that
I + C M QPT ∆ = C M Q ∆, and that ρ = C M Qα , we finally have that

W (t) = W (0) + R (ρ− e) t + R Y (t) . (9)

If we denote R (ρ − e) by θ as in Lemma 1, we have by (9) and (5) that (W, Y )
is a solution of the R−Skorokhod problem of X on the first orthant. Assumption
(HR) on matrix R given by the regularity of ∆, ensures the uniqueness of the
solution. Therefore we can apply Lemma 1 because

W (s) + X(t + s)−X(s) ≥ θ t for all s, t ≥ 0 ,

which is easy to check since

W (s) + X(t + s)−X(s) = W (s) + (W (0) + θ (t + s))− (W (0) + θ s) = W (s) + θ t ,

and W ≥ 0 . As a consequence, if Y is differentiable at point s,

Y ′(s) ≤ e− ρ . (10)

Step 2: Take the Lyapunov function

g(t) = eT R−1 W (t) , (11)

to which we will apply Lemma 2. By substituting (9) into (11),

g(t) = eT R−1 W (0) + eT (ρ− e) t + eT Y (t) = g(0) +
J∑

j=1

(
(ρj − 1) t + Yj(t)

)
.

Then, the points of differentiability of Yj(·) coincide with those of g(·), and if t is
one of these points,

g′(t) =
J∑

j=1

(
(ρj − 1) + Y ′

j (t)
)
, (12)
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g′(t) being non positive by (10). We finish the proof using Lemma 2. To this
end, let t ≥ 0 be a point such that g(t) > 0 (if any). By definition of g and
nonnegativity of all elements of R−1, there exists i such that Wi(t) > 0. Then, by
(5), Y ′

i (t) = 0, and by (12),

g′(t) ≤ ρi − 1 ≤ max
j=1,...,J

ρj − 1 ( < 0 because ρ < e ) . (13)

Thus, we have proved that g′(t) ≤ −κ, with κ = 1− max
j=1,...,J

ρj > 0, at any point109

t of differentiability of g(·) such that g(t) > 0 . Lemma 2 ensures that, in this110

situation, g(·) is non-increasing and that g(t) ≡ 0 for t ≥ g(0)
κ .111

Finally we have that

g(0) = eT R−1 W (0) = eT R−1 C M z ≤ eT R−1 C M e |z| ,
and therefore, by Lemma 2,

g(t) ≡ 0 for any t ≥ t0 |z| , with t0 =
eT R−1 C M e

1−maxj=1,...,J ρj
> 0 .

On account of (11) and the nonnegativity of the elements of R−1 we also obtain112

that W (t) ≡ 0 for any t ≥ t0 |z|, and the same applies for Z .113

Remark 3. In the particular case J = 1 (a
∨−system), (12) becomes g′(t) =114

(ρ1 − 1) + Y ′
1(t), and (13) in its turn, g′(t) = ρ1 − 1 < 0 . The rest of the proof115

follows similarly with κ = 1 − ρ1 > 0. Note that we do not use (10) in this116

situation, so actually we do not need Lemma 1. As a consequence, if J = 1 we117

have that ρ1 < 1 is sufficient to ensure stability (see Theorem 6.1 [2]).118
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